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ABSTRACT: The theoretical understanding of phosphor
luminescence is far from complete. To accomplish a full
understanding of phosphor luminescence, the data mining of
existing experimental data should receive equal consideration
along with theoretical approaches. We mined the crystallo-
graphic and luminescence data of 75 reported Eu2+-doped
phosphors with a single Wyckoff site for Eu2+ activator
accommodation, and 32 descriptors were extracted. A
confirmatory factor analysis (CFA) based on a structural
equation model (SEM) was employed since it has been helpful
in understanding complex problems in social sciences and in
bioinformatics. This first attempt at applying CFA to the data
mining of engineering materials provided a better understanding
of the structural and luminescent-property relationships for LED phosphors than what we have learnt so far from the
conventional theoretical approaches.
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1. INTRODUCTION
Enormous effort has been invested in establishing either a
theoretical or empirical model that will enable an accurate
prediction of the luminescence of phosphors. Of particular
interest is a reliable prediction of emission wavelength,
emission bandwidth, and quantum efficiency, which has been
a challenge in association with the quest to discover novel
phosphors for use in light emitting diodes (LEDs). The ab
initio approach based on density functional theory (DFT)
calculation has consistently improved, and many structural and
physical properties have been accurately evaluated.1 As far as
the luminescent materials are concerned, however, a reliable
calculation-based prediction is yet to be accomplished. The
DFT calculation has only recently reached the level of a rough
estimate of the ground state of 4fn and 4fn−15d1 energy states
for lanthanide activators, albeit with no precision.2−4 It has
been impossible to precisely predict emission wavelength,
emission bandwidth, and quantum efficiency with satisfactory
accuracy, no matter what types of currently available theoretical
approaches have been adopted.
In contrast to the current status of the calculation of

luminescent materials, however, Ceder et al.5−7 achieved a
remarkable advancement by combining theoretical ab initio
calculation with a heuristic data mining approach and thereby a
prediction of the feasibility of suggested structures, as well as a
prediction of material properties, has been achieved, particularly
for binary intermetallics (or alloys) and some Li-battery
materials. However, such brilliant achievement has never been
transferred to the study of phosphor materials because typical
LED phosphors are more complex, with a greater number of

constituent elements (e.g., quinary, senary, or more), and novel
phosphors discovered outside the prototype structures are
more desirable due to the intellectual property (IP)
complication in the field.8,9

Analogous to such a heuristic data mining approach, we have
employed the so-called metaheuristics-assisted combinatorial
materials discovery strategy, which has resulted in several
outstanding, practical discoveries of phosphors for use in LED
applications.8−10 This approach was more oriented to experi-
ments based on high-throughput syntheses, and therefore the
main focus was a substantial discovery rather than a prediction.
This approach enabled us to discover novel inorganic
compounds, which never belonged to any of the well-known
prototype structures, which the Inorganic Crystal Structure
Database (ICSD) classified based on reasonable criterion.11 A
total of 8230 prototypes were announced this year.12 The
metaheuristics-assisted combinatorial materials discovery strat-
egy has led to the discovery of novel prototype structures. A
huge amount of experimental data was produced during this
discovery process. However, the data was based only on
stochastic choice with no in-depth data mining or the ensuing
understanding.
The main focus of the present investigation originated from

the statistical approach that is typically used in the field of social
sciences. We introduced confirmatory factor analysis
(CFA)13,14 for data mining of existing phosphors by setting
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up the most appropriate structural equation model (SEM),
which provided us with a useful guideline for the design of
novel phosphor discovery. CFA differs from conventional
regression (or machine learning) technique, because CFA
focuses more on understanding rather than regressiona
complete understanding of the underlying relationship between
latent factors through an advanced SEM.

A number of pioneering achievements have been reported in
similar frameworks, wherein principal component analysis
(PCA), partial least-squares (PLS) regression, and some
other machine-learning techniques, such as artificial neural
network (ANN) and support vector machine (SVM), have
been employed for the data mining of other material
systems.15−22 In particular, Rajan et al.22 have recently reported

Figure 1. A−X, A−A, A−B, and A−C local structures. Atoms are represented by color, as shown in below. Also, the relative length obeys the actual
length scale. The number represents corresponding phosphors listed in Table s1 in the Supporting Information.
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interesting results by data-mining perovskite, apatite structures,
and some metals. Our approach, however, had two distinct
points that contrasted with these conventional data mining
cases. First, the material that we adopted for data mining was
luminescent materials (phosphors), which should be the most
suitable material for data mining because the complexity of the
material leads to incalculability. Second, a more significant
distinction was the uniqueness of the statistical approach that
we adopted. CFA has never been used for a materials data
mining process, although it has proven to be a powerful tool
that can promote a better understanding of high dimensional
data sets, particularly in the social sciences and bioinformatics
fields.13,14,23,24

2. DATA ACQUISITION AND DESCRIPTOR
EXTRACTION

The data acquisition was the most significant part of the meta-
analysis. From the literature, we collected structural and
luminescent data that are listed in Table s1 in the Supporting
Information. For the sake of accurate data acquisition, we
downsized the scope of the material, first by restricting it to
Eu2+-doped, oxide, oxyhalide, oxynitride, and nitride phosphors.
The 5d energy of Eu2+ and Ce3+ in oxide, oxyhalide, oxynitride,
and nitride phosphors was scattered widely.25,26 Thousands of
Eu2+-doped phosphors have been reported thus far, but we
restricted our scope to those having only a Wyckoff site for
activator accommodation in the host structure. Phosphors with
two or more activator sites presented complications in
determining the emission peak wavelengths and widths because
of the unclear activator site assignments and the energy
transfers between different activator sites. Finally, we precluded
cation solid-solution types from the analysis. Consequently, we
secured 75 phosphors for the statistical analysis.
We screened every reported Eu2+-activated phosphor by

referring to Scopus databases, and to the inorganic compound
structure database (ICSD). As a result, we found more than
2500 papers regarding the Eu2+-activated phosphor. The
number of Eu2+-activated phosphors reported thus far, which
exhibit distinctive crystallographic structures, was a total of 258.
Of those, 139 Eu2+-activated phosphors had a single Wyckoff
site for an Eu2+activator, and 119 had more than two. We
further reduced the number of Eu2+-activated phosphors by
excluding some old-fashioned, less-stable phosphors based on
sulfides and halides. Thus, we adopted 83 single-activator-sites,
and Eu2+-activated phosphors based on oxides, oxyhalides,
nitrides, and oxynitrides, which were targeted for use in LED
applications. Finally, a series of cation solid-solution phosphors
based on the same structure was removed, and the resultant
number of phosphors adopted in the present investigation was
75.
The aim of the present investigation was to understand the

luminescence of Eu2+-activated phosphors using their structural
characteristics and the basic characteristics of their constituent
elements. We denoted the structural and elemental character-
istics of phosphors as “descriptors”. As for the material
descriptor extraction, 32 material traits were selected for use
in our statistical data mining approach. Most of the descriptors
were related to the crystal structures of the host materials. We
did not involve thermodynamic parameters and physical
properties of host materials as a descriptor. It is noted that
traditional luminescence study has never focused on
thermodynamic parameters. Some physical properties, such as
the dielectric constant (refractive index) of host materials,

would be closely related with luminescence but it is
substantially impossible to obtain them for the 75 complex
material systems. The latent factors in SEM might incorporate
these missing descriptors although we do not know how they
worked in detail.
The chosen Eu2+-activated phosphors can be expressed by

the ANX formula12 for systematic descriptor extraction as
+A B C X : Eua b c x

2

where A, B, and C stand for the cation sites, each of which has
an independent Wyckoff site, likewise, X stands for anion sites.
A is the activator site, normally the alkali-earth-element site in
the host compound; the B site denotes the nonactivator cation
site. Many phosphors had no B site in their structure. The C-
site element was the most important in determining the entire
structure of a host, because these created either a tetrahedron
or an octahedron network along with anions. Such a network
creates a structure with either a two- or three-dimensional
backbone. The network forms by corner sharing through either
bridging or tripling points. The C-site element normally is a
light, small element such as Si, P, B, or Al; sometimes Li, Sc, or
Mg may occupy the C site. The small characters, a, b, c, and x
denote the stoichiometry of the host compound.
The basic idea to extract structural descriptors was the

reconstruction (or reinterpretation) of the host crystal structure
by centering on activator sites. Both the activator-anion ligand
polyhedron and the local structure comprised of the activator
and one of the other elements were parametrized as descriptors.
Only the activator site and its first anion neighbors were the
focus in most of the previous investigations. On the contrary,
we involved A−A, A−B, and A−C polyhedra consisting of the
nearest neighbors around the A site. In this regard, the
coordination number and the average distance of every
polyhedron around the activator site were defined as
descriptors, such as CA−X, CA−A, CA−B, and CA−C for the
coordination number, and dA−X, dA−A, dA−B, and dA−C for the
average distance. In the actual statistical process, we used the
reciprocal value of the distance because we had to reasonably
account for phosphors with no B ion site in the structure, such
that 1/dA‑B equaled zero if a B site was nonexistent.
The local structures around the Eu2+ activators for 75

different hosts are presented in Figure 1. Each polyhedron was
made up of the nearest neighbors consisting of X, A, B, and C
elements, respectively. The nearest neighbor was determined at
the first substantial rise in the magnitude of interatomic
distance. However, in a few cases where the interatomic
distance continuously increased, the nearest neighbor was at a
distance that had changed by more than 10%. Some of the A−A
and A−B local structures were not a polyhedron, but resulted
instead in 1- or 2-dimensional shapes. These nonpolyhedron
type local structures could be also meaningful, because these
must have been acting as interactivator energy transfer routes,
which will be discussed in more detail in the section 4. The
activator-anion local structure was a major concern in previous
investigations, and no attempts were made to examine the
cation−cation local structure around the activator site. The
cation neighbors should have a significant degree of influence
on the luminescence, but the mechanisms are unknown.
In addition to the eight structural descriptors, another 12

descriptors indicating the constituent elements occupying the
A, B, C, and X sites were defined. For instance, the atomic
number (NA, NB, NC, and NX), the electronegativity (EA, EB, EC,
and EX) of every constituent atom in the Pauling scale,27 and
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the Shannon radius (RA, RB, RC, and RX) in the corresponding
local environments28 should affect the bond character. In
evaluating these elemental characteristic parameters, a special
consideration was made when more than one element
constituted each of the A, B, C, and X sites. In these cases,
weighted average values were obtained according to the relative
number of atoms constituting each polyhedron. Lattice
parameter anisotropy, lattice angles, lattice volume, and
theoretical density were also adopted as descriptors (b/a, c/a,
β, γ, V and ρ). Because there was no triclinic in our data set, α
was omitted. Finally, we adopted basic symmetry descriptors
such as the space group number (SG), the activator site
symmetry number (SS), and the activator site multiplicity
(AM). All these structural and elemental descriptors were
defined such that the phosphor host structure could be
reinterpreted by centering on the activator site.
In addition to both the structural and elemental descriptors,

three luminescence-related descriptors were also added. The
emission peak wavelength (PW) and the full width at half-
maximum (fwhm) were adopted as descriptors in units of eV
along with the critical Eu2+ activator concentration (xc) in units
of cm−3. PW and fwhm were obtained at xc. In fact, xc was the
Eu2+ activator concentration that exhibited the highest PL
intensity. The emission peak wavelength is known to vary
dramatically with the Eu2+ activator concentration, so that the
peak wavelength should never be regarded as a material’s
intrinsic property. However, the concentration-quenching data,
that is, the emission spectra data that were monitored as a
function of the Eu2+ activator concentration, were available only
for 45 out of 75 phosphors. When the concentration-quenching
data were not available, the Eu2+ activator concentration, for
which PW and fwhm values were evaluated, was approximated
to xc. It is reasonable to assume that the best samples of PL
intensity were used in most of the recent LED phosphor-related
reports, unless the measurement of the radiative decay time was
attempted. To ensure this assumption, we omitted such reports
that deals with the detailed spectroscopy in diluted model
phosphors at cryogenic temperatures, when the data set was
acquired.
If it was possible to obtain zero phonon energy value as a

luminescence-related descriptor, the data mining would be
more promising. In such an ideal case, the data mining would
be unnecessary because a theoretical approach could suffice.
However, it is practically impossible to collect the zero phonon
line data for every phosphor. The zero phonon line data
collected for extremely diluted model phosphors at cryogenic
temperatures could be more attractive than what we adopted as
luminescence-related descriptors. However, those data are
extremely scarce. The conventional emission data measured
at room temperatures for practically acceptable activator
concentrations were only available in the field. It should be
noted that the data mining is always based on the general data
with a certain degree of errors. The ultimate goal of the data
mining is to acquire useful information from such a limited,
incomplete data set. It should be noted that the practical data
treated in the physical science are also incomplete and
erroneous. It is conventional to systematically treat the error
as a parameter in most of statistics-involved data mining
processes. Thus, the incomplete xc data would not be
problematic, as far as the statistical science was of concern.
Table s1 in the Supporting Information shows the chosen 32

descriptors and their evaluation results for 75 different Eu2+-
activated, single-A-site phosphors. The 32 descriptors are

divided into three categories, the host structure descriptors, the
constituent element descriptors, and the luminescence
descriptors. Both the host structure descriptors and the
constituent element descriptors were regarded as indicator
(or predictor) variables, whereas the luminescence descriptors
became target variables. In particular, it should be noted that
the activator concentration dealt with here is the critical
activator concentration (xc), not an indicator variable but a
target variable, such as PW and fwhm.

3. PHOSPHOR INFORMATICS THROUGH
CONFIRMATORY FACTOR ANALYSIS

Confirmatory factor analysis (CFA)13,14 was employed for a
statistical approach to a plausible interpretation of the
descriptor data collected for Eu2+-activated phosphors with a
single activator site. In general, CFA differs from conventional
regression because it involves a set of latent variables in
identifying the underlying relationship between measured
variables. In addition to the indicator variables introduced in
the section 2, we incorporated several latent variables via
principal component analysis (PCA) and the ensuing linear
regression using several principal components. The preliminary
PCA and regression process was for data dimensionality
reduction as well as for the rough determination of latent
factors in advance of the CFA. The latent variables (or factors)
should implicate some of the material attributes, but it is
impossible to measure them. The aim of CFA was not to
develop a regression model that could predict emission
properties as a function of the host structure and the
constituent element. The empirical regression model is nothing
but an inattentive attempt, which usually is futile even though
there have been a number of such research attempts in the field.
Our aim was to more systematically understand the
complicated correlations among the descriptors.
The conventional approach precludes target variables in the

PCA. Thus, PCA was implemented for 29 structural and
elemental descriptors. The 75 phosphors were distributed in a
29-dimension hyperspace, where each basis axis represented 29
descriptors. PCA enabled us to reduce the data dimension
enough to be understood by human cognitive ability, while
minimizing the loss of information during this data reduction.
In fact, PCA was a part of CFA, so that it was carried out prior
to conducting the CFA process to choose appropriate
indicators, which could indirectly (or partially) measure each
latent factor. Consequently, we selected 9 principal compo-
nents (PCs) with Eigen values greater than 1. Indicators for
each of the PCs were determined such that their factor loading
exceeded 0.5. This criterion is usually adopted in the field of
social sciences.13,14 Thereafter, a simple linear regression was
implemented using the 9 PCs as predictors and the emission
peak wavelength (PW) as a target variable to roughly check the
correlation between the target variable and each PC. The
regression was not available when the full width at half-
maximum (fwhm) and the critical activator concentration (xc)
were adopted as a target variable. Only the PW was well fitted
to the regression model. As a result, a certain degree of
correlation was found between the PW and the 6 PCs (PC1,
PC3, PC5, PC6, PC7, and PC9). The PCA and the ensuing
regression results are presented in Table 1. The result was used
as the baseline for a reliable specification of the structural
equation model (SEM) for the ensuing CFA.
As for specification of the SEM in the CFA, the overall

performance factor (or target factor) determination was the
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first step. PW, fwhm, and xc were used to measure the target
factors. However, no other factors could be connected to the
performance factor with sufficient statistical significance.
Therefore, the performance factor was removed from the
SEM and instead only a PW indicator was used as a target
variable to be identified. Similar to prior regression, the
inclusion of fwhm and xc deteriorated the statistical significance.
The only target variable adopted in the present approach was
PW.
The final specification of the SEM was set up after testing a

large number of plausible specifications using the PCA results,
as shown Figure 2. As a result, PC2, PC4, and PC8 were
removed in the final model since they showed no correlation
with PW in the linear regression and neither statistical
significance nor intuitive accountability was obtained when
they were introduced as factors in the SEM. Although PC3,
PC7, and PC9 showed a correlation with the PW in the linear
regression, it also deteriorated the statistical significance and
intuitive accountability as factors in the SEM. Accordingly, they
were also removed based on the trade-off between parsimony
and goodness-of-fit.29

PC1 consisted of local environmental indicators around the
activator site, such as A−X, A−A, and A−C distances, as well as
A-site element descriptors. However, when PC1 was set as a
latent factor with its indicators, the statistical significance was
never obtained at the 0.05 level. So PC1 should never be used
as a latent factor, but Instead, PC1 was split into four factors,
each of which represented the A−X, A−A, and A−C local
environments, and an additional factor representing the A
element traits. Thereafter, all the others were removed except
for the A−X and A−A local environment factors, because the
removed factors also led to an unacceptable level of statistical
significance.
All of the latent factors basically came from the PCs with a

certain degree of correlation with PW; namely, two latent
factors directly from PC5 and PC6, and the other two from the
PC1 splitting and also from PC3. We tried every possible SEM
using these four factors. In particular, an effort was made to link
each factor either directly or indirectly to the target variable
(PW), and the final specification was determined based on the

statistical significance, which should be far below the 0.05 level.
There was a clear causal effect of the A-A local environment
factor on the A-X local environment factor. It should be noted
that other types of data mining strategies, such as linear or
nonlinear model regression, artificial neural network, support
vector machine, etc.,15−22 could never identify this type of
indirect effect. Figure 2 shows the final SEM, and the
standardized regression weights for every factor and indicator
are summarized in Table s2, which is available in the
Supporting Information.
When the final specification of the SEM had been completed,

as shown in Figure 2, a plausible title was required for each
factor. The title for a factor was determined such that the
overall meaning of the indicators measuring the factor could be
incorporated in the title. The first two factors were titled A−X
and A−A local environment factors. The indicators measuring
these factors were dA−X, CA−X, dA−A, and CA−A. Both dA−X and
CA−X described the smallest anion polyhedron around the A
site, which is well-known to account for the 5d energy of Eu2+

(or Ce3+), and has played a crucial role in Dorenbos model.25,26

dA−A and CA−A represented the activator site distribution
centering on the activator site (A site). Although traditional
phosphor research has never focused on the activator site
distribution around the activator site, dA−A and CA−A played a
certain role in our SEM. The A site atom was normally one of
alkali earth elements, and its choice was considered to have
affected the anion polarizability, which therefore had a slight
influence on the 5d energy shift.25,26 However, the A−A
distance and coordination number has never been of interest.
The detailed A site consideration was unprecedented in the
previous study since the accepted wisdom dictated focusing
only on the anion polyhedron around the activator site.
Finally, the factors from PC5 and PC6 were titled the anion

trait factor and the networking element trait factor, respectively,
since PC5 and PC6 represented the attributes of the X and C

Table 1. PCA and the Ensuing Linear Regression Resulta

aLoadings to each principal component are listed (VARIMAX rotation
was adopted). The emission peak wavelength (PW) was a target
variable with nine principal components as predictors. The color of the
line represents the degree of correlation; the dark line represents a
strong correlation and the dim line shows a weak correlation. FWHM
and xc had no acceptable correlation with any of the nine principal
components. Figure 2. Structural equation model (SEM) involved four latent

factors: The ovals are the A−X local environment factor (or small scale
environment factor), the A−A local environment factor (or large scale
environment factor), the anion trait factor, and the networking
element trait factor. The rectangles are indicators. The circles are error
terms. The number “1” indicates that the variance is fixed as 1.
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site atoms, respectively. The indicators measuring these
elemental factors included the ionic radius (RX and RC) and
the electronegativity (Ex and EC). Both the anion trait factor
and the networking element trait factor directly affected PW
with no causal effect on other factors.
The four latent factors were titled the A−X local environ-

ment factor (or small scale environment factor), the A−A local
environment factor (or large scale environment factor), the
anion trait factor, and the networking element trait factor. The
introduction of the A−X local environment factor and the
anion trait factor in the SEM was not surprising, since common
sense suggests that the A−X local environment plays a key role
both in the crystal field theory and in the nephelauxetic effect
theory. Therefore, PW depends on the A−X distance and more
importantly on the anion type, such as fluoride, chloride,
sulfide, oxide, or nitride. The networking element trait factor
was also reasonable because PW was greatly affected by the
type of networking atom, since aluminate, silicate, borate,
phosphate, etc., are distinctive. This shows how the final
specification of SEM was in complete agreement with the
traditional scientific finding.
Even more interesting was that the A−A local environment

factor had an indirect influence on PW through the A−X local
environment factor. This implies that, relative to PW, the A−X
and A−A local environment factors had a strong correlation.
This reflected a causal effect of the A−A local environment
factor on the A−X local environment factor in the final SEM.
The effective local environment around the activator spanned
beyond the anion local structure and thereby the cation
distribution around the activator should be considered when
planning for the discovery of novel phosphors. It is not
surprising to see such a causal effect because the A−A and A−X
local structure are interconnected in the host structure. For
example, a distortion in A−A polyhedrons would definitely lead
to a certain degree of change in A−X polyhedrons. This clearly
indicates that the SEM derived from the experimental data set
was reasonably explained by the scientific finding, and
simultaneously provided better understanding in comparison
to the theoretical interpretation only.
Although the A−A local environment has never been of

interest in the conventional phosphor research focusing on the
crystal field and covalency effects only, the role of the A−A
local environment factor could be well understood on the
theoretical basis. Besides the connected distortion in the A−A
and A−X polyhedrons, the most reasonable interpretation for
the A−A local environment factor would be related to the
interactivator energy transfer. It is obvious that the
interactivator energy transfer should have a great influence on
both the peak wavelength and fwhm. The energy transfer route
characterized by the A−A distance and coordination number
plays a critical role in determining the energy transfer rate.30−33

In this regard, the inclusion of the A−A local environment
factor in the final SEM was reasonable form the theoretical
point of view.
The measured PW could be split into intrinsic and extrinsic

terms (PW = PWint + ΔPWext) to give a theoretically reliable
interpretation to the final SEM. What we can infer from the
typical Dorenbos model25,26,34,35 is PWint, which can be
measured at a very diluted system based the assumption of
inactive interactivator energy transfer, while ΔPWext is
dependent on the activator concentration. ΔPWext is greatly
affected by the interactivator energy transfer and partly by the
host lattice distortion. In this context, the A−X local

environment, the anion trait factor, and the networking
element trait factor played a significant role in determining
PWint, while the A−A local environment factor was closely
associated with ΔPWext.
The details of the final SEM will be discussed in the

following section, using a specific case wherein conventional
theory could not provide a reliable interpretation, but the
present SEM could. Two very similar phosphors,
Ba2LiB5O10:Eu

2+ and BaB8O13:Eu
2+, exhibited totally different

emission colors, with different A−A environments and a slight
C-site atom alteration. Although the A−X local structures were
similar, the phosphors could be differentiated based on the
SEM.

4. UNDERSTANDING OF THE STRUCTURAL
EQUATION MODEL USING A SPECIFIC CASE

The motivation of the present investigation was the brilliant
work of Dorenbos,25,26,34,35 wherein a very simple, reliable
semiempirical model was developed for phosphors: the 5d
energy level for the Ce3+ and Eu2+ activator in various hosts was
modeled. As clearly shown in Figure 3, the so-called total shift

was evaluated as a function of several basic parameters such as
crystal-field splitting energy, activator-anion ligand distance,
coordination number, anion polarizability, site symmetry, and
ionic size difference. The emission energy should be inferred
from the total shift value if phosphors exhibited extremely
dilute activator concentrations and Stokes shift was predictable.
However, it is not possible to clearly define the emission peak
wavelength, emission bandwidth, and quantum efficiency as a
function of the characteristics described above for practical
phosphors for use in LEDs. It is obvious that the information
regarding the activator and anion ligand was insufficient to
describe the phosphor performance. In this context, we
introduced 32 descriptors, which covered not only the short-
range information around the activator-anion polyhedra but
also the information beyond. In order to deal with such a
complicated, multiparameter problem along with a huge
amount of existing data, statistical data mining would be of
great assistance for the understanding and prediction task.
Although a more detailed calculation strategy based on the
DFT calculation might be more suitable for the understanding
and prediction task, the cost would be prohibitive.
The Dorenbos25,26,34,35 model was succinctly represented in

Figure 3, where, r(A) expresses the ratio between crystal field
splitting and crystal field shift, A stands for an arbitrary host, r

Figure 3. Simple schematic diagram and mathematical equations to
evaluate the total shift (D) given by Dorenbos in ref 25. Such shift can
be evaluated using several basic measurable parameters such as crystal-
field splitting energy, activator-anion ligand distance, coordination
number, anion polarizability, site symmetry, and ionic size difference.
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represents the radial position of the electron in either the 5d or
4f orbital, and ⟨r2⟩ is the expectation value of r2, αsp is the
polarizability, e is the elementary charge, and ε0 is the
permittivity of vacuum. The summation is over all N nearest
coordinating anion ligands. Ri is the distance of the ligands
from the activator ion, ΔR the effective Shannon ionic radii and
ΔS is the Stokes shift.
The main emphasis in the above expressions was given to the

activator−anion ligand distance, the activator−anion ligand
coordination number and the anion polarizability, even though
entire emission process is also dependent on the crystal
structure, the site symmetry and the constituent element. The
mathematical equations shown in Figure 3 worked best for a
fixed activator site symmetry. The data set, which we collected
from phosphors targeting the practical application to LEDs,
showed a variety of host structures spanning from the space
group P21(4) to Ia3 ̅d (230). The structural equation model
(SEM) should work for all different types of host structures.
According to the loading values for the factors and indicators

appearing in the final SEM, which are listed in Supporting
Information Table s2, the smaller A-A distance, smaller A-A
coordination number, larger radius of C site element, and
smaller electronegativity of the C-site element gave rise to an
emission peak red-shift. To verify the findings shown in
Supporting Information Table s2, two similar phosphors
Ba2LiB5O10:Eu

2+ and BaB8O13:Eu
2+,36,37 from the data sets,

were examined in terms of the local structure around the
activator and emission peak wavelength. Figure 4 shows the A−

X and A−A local structures along with the emission spectra for
Ba2LiB5O10:Eu

2+ and BaB8O13:Eu
2+. The A−X local environ-

ments were similar, that is, the average distance was almost
identical and the coordination number was exactly the same.
The activator site symmetry for both phosphors was relatively
low and also similar (1 for Ba2LiB5O10:Eu

2+ and 3 for
BaB8O13:Eu

2+), so that the difference in site symmetry could
not lead to a huge difference in emission energy based on the
conventional theory. Despite the similarity in the A−X local
structures, the emission spectra differed significantly,
Ba2LiB5O10:Eu

2+ exhibited an emission band in the near UV
range but BaB8O13:Eu

2+ showed an orange-yellow color
emission. This finding could not be explained definitively by
conventional theory based on both the nephelauxetic effect and
crystal field splitting. Assuming that the Stokes shift was similar,
only a parameter in the Dorenbos model,25,26 which can explain
the huge difference in emission peak wavelength, could be the
anion polarizability because the A−X local structure was

identical. If the equation shown in Figure 3 had held and the
Stokes shift had been similar, the change in the anion
polarizability induced by the Li inclusion might have been a
critical reason for the huge change in emission energy, because
the other constituting elements were identical for both borate
phosphors. It is certain that the small change in the anion
polarizability induced by such a small number of Li
incorporation was not only a reason for the huge change in
emission wavelength, because the anion polarizability for LuF3
and LiLuF4 did not differ significantly from each other and the
anion polarizability for YF3 and LiYF4 was also similar.25

The CFA result based on the SEM proved to be powerful
and economical in accounting for scientifically noninterpret-
able, complicated problems such as the Ba2LiB5O10:Eu

2+ and
BaB8O13:Eu

2+ cases. The emission peak energy difference could
be explained by considering the differences in the A−A local
environments between Ba2LiB5O10:Eu

2+ and BaB8O13:Eu
2+.

The A−A distance and the coordination number for
Ba2LiB5O10:Eu

2+ was much smaller than those for Ba-
B8O13:Eu

2+. This finding was in perfect agreement with the
regression weights (loadings) for the related factors and
indicators in Supporting Information Table s2. Consequently,
the smaller A−A distance and smaller A−A coordination
number led to a red shift. The larger radius and smaller
electronegativity of the C site element would lead to a red shift.
In this regard, the red shift can also be well explained by Li
incorporation at the C site. Thus, it is obvious that the
structural equation model provided us with additional
information on the top of what the theoretical approach
would have given. Along with the change in the C site element
by the Li inclusion, the A−A distance and the A−A
coordination number also would influence the emission peak
wavelength.
One might argue that the peak wavelength difference

between both Ba2LiB5O10:Eu
2+ and BaB8O13:Eu

2+ originated
from the difference in Eu2+ concentration. But this would make
no sense. In fact, the emission peak wavelength (PW) for both
the phosphors was insensitive to the activator concentration
and thereby never changed with the change in activator
concentration.36,37 It is thus, obvious that PWs obtained for
both phosphors are not activator concentration-dependent but
are a sort of intrinsic materials constant. Furthermore, it should
be noted that the critical activator concentration (xc) is not just
an independent variable (an indicator) but is in fact a
dependent variable (a target variable) just like a PW.
Accordingly, it is baseless to argue that the difference in PW
might originate from the difference in xc.

5. CONCLUSION
To substantiate the theoretical approach, we employed a type
of confirmatory factor analysis, which was proven to be
powerful and allowed a better interpretation of the
experimental data. In this regard, we collected materials
information from the 75 Eu2+-activated phosphors that have
been reported thus far, and defined 32 descriptors, each of
which described one of the material attributes. Using this 75 ×
32 data set, we implemented a principal component analysis for
data dimension reduction and the ensuing confirmatory factor
analysis by setting up an appropriate structural equation model
(SEM).
Using the reliable SEM, the underlying relationship between

the emission peak wavelength (PW) of Eu2+-activated
phosphors and eight material descriptors was interpreted

Figure 4. Emission spectra and A−X and A−A local structures for
Ba2LiB5O10:Eu

2+ and BaB8O13:Eu
2+.
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through four latent factors. The four latent factors were referred
to as the A−X local environment factor (or small-scale
environment factor), the A−A local environment factor (or
large-scale environment factor), the anion trait factor, and the
networking element trait factor. A causal effect from the A−A
local environment factor to the A−X local environment factor
was instrumental in the interpretation of phosphors that have
never been definitively explained using conventional theory-
based models.
The present work represents the successful application of a

conventional strategy from the social sciences to solve a
problem in materials science. With this process, we extracted
valuable information from experimental data that we might
have otherwise overlooked. When all available data are used,
the understanding of complicated systems becomes much more
efficient and economical compared with when we focus only on
a theoretical approach.
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